Oxidative damage to lung tissue and peripheral blood in endotracheal PM2.5-treated rats.
نویسندگان
چکیده
OBJECTIVE To investigate the oxidative damage to lung tissue and peripherial blood in PM2.5-treated rats. METHODS PM2.5 samples were collected using an auto-sampling instrument in summer and winter. Treated samples were endotracheally instilled into rats. Activity of reduced glutathione peroxidase (GSH-Px) and concentration of malondialdehyde (MDA) were used as oxidative damage biomarkers of lung tissue and peripheral blood detected with the biochemical method. DNA migration length (microm) and rate of tail were used as DNA damage biomarkers of lung tissue and peripheral blood detected with the biochemical method. RESULTS The activity of GSH-Px and the concentration of MDA in lung tissue significantly decreased after exposure to PM2.5 for 7-14 days. In peripheral blood, the concentration of MDA decreased, but the activity of GSH-Px increased 7 and 14 days after experiments. The two indicators had a dose-effect relation and similar changing tendency in lung tissue and peripheral blood. The DNA migration length (microm) and rate of tail in lung tissue and peripheral blood significantly increased 7 and 14 days after exposure to PM2.5. The two indicators had a dose-effect relation and similar changing tendency in lung tissue and peripheral blood. CONCLUSION PM2.5 has a definite oxidative effect on lung tissue and peripheral blood. The activity of GSH-Px and the concentration of MDA are valuable biomarkers of oxidative lung tissue damage induced by PM2.5. The DNA migration length (microm) and rate of tail are simple and valuable biomarkers of PM2.5-induced DNA damage in lung tissues and peripheral blood. The degree of DNA damage in peripheral blood can predict the degree of DNA damage in lung tissue.
منابع مشابه
Evaluating Radioprotective Effect of Hesperidin on Acute Radiation Damage in the Lung Tissue of Rats
Background: Oxidative stress plays an important role in the pathogenesis and progression of γ-irradiation-induced cellular damage, Lung is a radiosensitive organ and its damage is a dose-limiting factor in radiotherapy. The administration of dietary antioxidants has been suggested to protect against the succeeding tissue damage. The present study aimed to evaluate the radioprotective efficacy ...
متن کاملChinese green tea consumption reduces oxidative stress, inflammation and tissues damage in smoke exposed rats
Objective(s):One cause of cigarette smoking is oxidative stress that may alter the cellular antioxidant defense system, induce apoptosis in lung tissue, inflammation and damage in liver, lung, and kidney. It has been shown that Chinese green tea (CGT) (Lung Chen Tea) has higher antioxidant property than black tea. In this paper, we will explore the preventive effect of CGT on cigarette smoke-in...
متن کاملDose-Dependent inhibitory Effect of Ferulic Acid, a Dietary Antioxidant on Nicotine-Induced Tissue Oxidative Stress in Experimental Rats
The present study was aimed at elucidating the protective effect of ferulic acid (FA), a natural polyphenol against nicotine-induced tissue damage, including lung, liver and kidney of experimental rats. Female albino rats of Wistar stain were used for the experimental study. Lung toxicity was induced by subcutaneous injection of nicotine at a dose of 2.5 mg/kg body weight (5 days a week, for 22...
متن کاملEffects of gamma oryzanol on factors of oxidative stress and sepsis-induced lung injury in experimental animal model
Objective (s): There is corroborating evidence to substantiate redox imbalance and oxidative stress in sepsis that finally leads to organ damage or even death. Gamma oryzanol (GO) is one of the major bioactive components in rice bran has been considered to function as an antioxidant. The present study was carried out to evaluate the antioxidant activity of gamma oryzanol in vitro and its effica...
متن کاملEffects of Atorvastatin on the Hypertension-Induced Oxidative Stress in the Rat Brain
Background: It is well known that the development of brain oxidative stress is one of the most serious complications of arterial hypertension that evokes brain tissue damage. The aim of this study was to examine the effects of atorvastatin treatment (20 mg/kg/day), as an antioxidant, to prevent the brain tissue oxidative stress in the hypertensive (HTN) rats. Methods: Experiments were performed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomedical and environmental sciences : BES
دوره 22 3 شماره
صفحات -
تاریخ انتشار 2009